Midterm 2 - Review - Problems

Peyam Ryan Tabrizian

Thursday, October 20th, 2011

1 Determinants

Problem 1

Find $\operatorname{det}(A)$, where:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
2 & 0 & 0 & 3 \\
3 & 1 & 4 & 7 \\
1 & 1 & 0 & 3
\end{array}\right]
$$

Problem 2

Find $\operatorname{det}(A)$, where:

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8 \\
5 & 6 & 7 & 8 & 9
\end{array}\right]
$$

2 Diagonalization

Problem 3

Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
2 & 0 & 3
\end{array}\right]
$$

3 Vector Spaces

Problem 4

Is the following set a subspace of \mathbb{R}^{3} ?

$$
V=\left\{\left.\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \right\rvert\, a+b+c=1\right\}
$$

Problem 5

Is the following set a subspace of \mathbb{R}^{3} ? If yes, find a basis for W and $\operatorname{dim}(W)$:

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right\}
$$

Problem 6

If

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for $\operatorname{Row}(A)$ and $\operatorname{Col}(A)$
(b) Find $\operatorname{Rank}(A)$ and $\operatorname{DimNul(A)}$

Problem 7

Define $T: P_{3} \rightarrow P_{4}$ by:

$$
T(p)=\int_{0}^{t} p(x) d x
$$

(Basically, $T(p)$ is the antiderivative of p without the constant)
(a) Show T is a linear transformation
(b) Find the matrix relative to the basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ of P_{3} and $\mathcal{C}=$ $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ of P_{4}

Problem 8

If:

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
-1 \\
8
\end{array}\right],\left[\begin{array}{c}
1 \\
-5
\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

Find $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}$ and use this to calculate $[\mathbf{x}]_{\mathcal{C}}$, where $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$

4 Orthogonality

Problem 9

Find the orthogonal projection of $\mathbf{y}=\left[\begin{array}{l}3 \\ 1 \\ 5 \\ 1\end{array}\right]$ on $W=\operatorname{Span}\left\{\left[\begin{array}{c}3 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right]\right\}$

Problem 10

Use the Gram-Schmidt process to find an orthonormal basis for:

$$
W=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right],\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]\right\}
$$

Problem 11

Find a least-squares solution and the corresponding least-squares error of $A \mathbf{x}=$ b, where:

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 4 \\
1 & 2
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]
$$

5 True/False Extravaganza!

Problem 12

(a) Every square matrix is diagonalizable
(b) If Q is orthogonal, then $Q Q^{T}=I$
(c) The columns of the change of coordinates matrix from \mathcal{B} to \mathcal{C} are the \mathcal{B}-coordinate vectors of the vectors in \mathcal{C}
(d) The union of two subspaces of V is a subspace of V
(e) The intersection of two subspaces of V is a subspace of V
(f) If $A^{2}=A$, then the only eigenvalues of A are 0 and 1
(g) If A is not invertible, then A is not diagonalizable.
(h) If V is a 4- dimensional vector space, then any set of 3 vectors cannot $\operatorname{span} V$.
(i) If A is similar to B, then $\operatorname{det}(A)=\operatorname{det}(B)$
(j) If A is diagonalizable, then $\operatorname{det}(A)$ is the product of the eigenvalues of A (counting multiplicities)
(k) For all \mathbf{y} and subspaces $W, \mathbf{y}-\operatorname{Proj}_{W} \mathbf{y}$ is orthogonal to W.

